Subgroup ($H$) information
| Description: | $C_2^4:D_4$ |
| Order: | \(128\)\(\medspace = 2^{7} \) |
| Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Generators: |
$\left(\begin{array}{rr}
5 & 0 \\
0 & 1
\end{array}\right), \left(\begin{array}{rr}
9 & 10 \\
2 & 3
\end{array}\right), \left(\begin{array}{rr}
3 & 10 \\
5 & 9
\end{array}\right), \left(\begin{array}{rr}
7 & 6 \\
0 & 7
\end{array}\right)$
|
| Nilpotency class: | $2$ |
| Derived length: | $2$ |
The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.
Ambient group ($G$) information
| Description: | $D_4\times \GL(2,\mathbb{Z}/4)$ |
| Order: | \(768\)\(\medspace = 2^{8} \cdot 3 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $A_4.C_2^6.C_2^4$ |
| $\operatorname{Aut}(H)$ | $C_2^{12}.D_4$, of order \(32768\)\(\medspace = 2^{15} \) |
| $\card{W}$ | \(32\)\(\medspace = 2^{5} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $6$ |
| Number of conjugacy classes in this autjugacy class | $2$ |
| Möbius function | not computed |
| Projective image | not computed |