Properties

Label 768.1088764.6.a1
Order $ 2^{7} $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4\times C_2^4$
Order: \(128\)\(\medspace = 2^{7} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\left(\begin{array}{rr} 5 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 7 & 6 \\ 6 & 1 \end{array}\right), \left(\begin{array}{rr} 7 & 0 \\ 0 & 7 \end{array}\right), \left(\begin{array}{rr} 7 & 0 \\ 6 & 7 \end{array}\right), \left(\begin{array}{rr} 3 & 4 \\ 8 & 3 \end{array}\right), \left(\begin{array}{rr} 7 & 6 \\ 0 & 7 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), a semidirect factor, nonabelian, a $p$-group (hence elementary and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $D_4\times \GL(2,\mathbb{Z}/4)$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $S_3$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$A_4.C_2^6.C_2^4$
$\operatorname{Aut}(H)$ $C_2^{10}.C_2^5.A_8$, of order \(660602880\)\(\medspace = 2^{21} \cdot 3^{2} \cdot 5 \cdot 7 \)
$\card{W}$\(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2^5$
Normalizer:$D_4\times \GL(2,\mathbb{Z}/4)$
Complements:$S_3$ $S_3$
Minimal over-subgroups:$C_2^6:C_6$$C_2^2:D_4^2$
Maximal under-subgroups:$C_2^6$$C_2^4\times C_4$$D_4\times C_2^3$$D_4\times C_2^3$$D_4\times C_2^3$$D_4\times C_2^3$$D_4\times C_2^3$$D_4\times C_2^3$$D_4\times C_2^3$$D_4\times C_2^3$$D_4\times C_2^3$$D_4\times C_2^3$$D_4\times C_2^3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed