Subgroup ($H$) information
| Description: | $D_4\times C_2^4$ |
| Order: | \(128\)\(\medspace = 2^{7} \) |
| Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Generators: |
$\left(\begin{array}{rr}
5 & 0 \\
0 & 1
\end{array}\right), \left(\begin{array}{rr}
7 & 6 \\
6 & 1
\end{array}\right), \left(\begin{array}{rr}
7 & 0 \\
0 & 7
\end{array}\right), \left(\begin{array}{rr}
7 & 0 \\
6 & 7
\end{array}\right), \left(\begin{array}{rr}
3 & 4 \\
8 & 3
\end{array}\right), \left(\begin{array}{rr}
7 & 6 \\
0 & 7
\end{array}\right)$
|
| Nilpotency class: | $2$ |
| Derived length: | $2$ |
The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), a semidirect factor, nonabelian, a $p$-group (hence elementary and hyperelementary), metabelian, and rational.
Ambient group ($G$) information
| Description: | $D_4\times \GL(2,\mathbb{Z}/4)$ |
| Order: | \(768\)\(\medspace = 2^{8} \cdot 3 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
| Description: | $S_3$ |
| Order: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Automorphism Group: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| Outer Automorphisms: | $C_1$, of order $1$ |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $A_4.C_2^6.C_2^4$ |
| $\operatorname{Aut}(H)$ | $C_2^{10}.C_2^5.A_8$, of order \(660602880\)\(\medspace = 2^{21} \cdot 3^{2} \cdot 5 \cdot 7 \) |
| $\card{W}$ | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | not computed |
| Projective image | not computed |