Properties

Label 768.1088764.384.c1
Order $ 2 $
Index $ 2^{7} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Exponent: \(2\)
Generators: $\left(\begin{array}{rr} 11 & 0 \\ 0 & 11 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), stem (hence central), a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $D_4\times \GL(2,\mathbb{Z}/4)$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $\GL(2,\mathbb{Z}/4):C_2^2$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_4^2.(D_4\times S_4)$, of order \(3072\)\(\medspace = 2^{10} \cdot 3 \)
Outer Automorphisms: $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian and monomial (hence solvable).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$A_4.C_2^6.C_2^4$
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$\card{W}$$1$

Related subgroups

Centralizer:$D_4\times \GL(2,\mathbb{Z}/4)$
Normalizer:$D_4\times \GL(2,\mathbb{Z}/4)$
Minimal over-subgroups:$C_6$$C_2^2$$C_2^2$$C_2^2$$C_2^2$$C_2^2$$C_2^2$$C_2^2$$C_2^2$$C_2^2$$C_2^2$$C_2^2$$C_4$
Maximal under-subgroups:$C_1$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed