Properties

Label 7200.c.60.a1.a1
Order $ 2^{3} \cdot 3 \cdot 5 $
Index $ 2^{2} \cdot 3 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$\SL(2,5)$
Order: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Index: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\left(\begin{array}{rrrr} 3 & 3 & 0 & 0 \\ 4 & 1 & 0 & 0 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 1 & 1 \end{array}\right), \left(\begin{array}{rrrr} 4 & 3 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 4 & 2 \\ 0 & 0 & 4 & 1 \end{array}\right), \left(\begin{array}{rrrr} 4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{array}\right)$ Copy content Toggle raw display
Derived length: $0$

The subgroup is normal, a semidirect factor, nonabelian, and quasisimple (hence nonsolvable and perfect).

Ambient group ($G$) information

Description: $\OmegaPlus(4,5)$
Order: \(7200\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$0$

The ambient group is nonabelian and perfect (hence nonsolvable).

Quotient group ($Q$) structure

Description: $A_5$
Order: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Automorphism Group: $S_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $0$

The quotient is nonabelian, simple (hence nonsolvable, perfect, quasisimple, and almost simple), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_5\wr C_2$, of order \(28800\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $S_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
$W$$A_5$, of order \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$\SL(2,5)$
Normalizer:$\OmegaPlus(4,5)$
Complements:$A_5$ $A_5$
Minimal over-subgroups:$C_5\times \SL(2,5)$$C_3\times \SL(2,5)$$\SL(2,5):C_2$
Maximal under-subgroups:$\SL(2,3)$$C_5:C_4$$C_3:C_4$
Autjugate subgroups:7200.c.60.a1.b1

Other information

Möbius function$-60$
Projective image$A_5^2$