Properties

Label 7200.c.6.a1.a1
Order $ 2^{4} \cdot 3 \cdot 5^{2} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$\SL(2,5):D_5$
Order: \(1200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 4 & 0 & 1 \end{array}\right), \left(\begin{array}{rrrr} 3 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 0 & 4 & 0 & 2 \end{array}\right), \left(\begin{array}{rrrr} 1 & 4 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 3 & 2 & 4 & 4 \\ 0 & 3 & 0 & 1 \end{array}\right), \left(\begin{array}{rrrr} 2 & 4 & 0 & 0 \\ 4 & 0 & 0 & 0 \\ 1 & 2 & 3 & 4 \\ 3 & 0 & 4 & 0 \end{array}\right), \left(\begin{array}{rrrr} 4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, and nonsolvable.

Ambient group ($G$) information

Description: $\OmegaPlus(4,5)$
Order: \(7200\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$0$

The ambient group is nonabelian and perfect (hence nonsolvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_5\wr C_2$, of order \(28800\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $C_2\times F_5\times S_5$, of order \(4800\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{2} \)
$W$$D_5\times A_5$, of order \(600\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$\SL(2,5):D_5$
Normal closure:$\OmegaPlus(4,5)$
Core:$\SL(2,5)$
Minimal over-subgroups:$\OmegaPlus(4,5)$
Maximal under-subgroups:$C_5\times \SL(2,5)$$\SL(2,3):D_5$$\SL(2,5):C_2$$C_{10}.D_{10}$$D_{15}:C_4$
Autjugate subgroups:7200.c.6.a1.b1

Other information

Number of subgroups in this conjugacy class$6$
Möbius function$-1$
Projective image$A_5^2$