Properties

Label 7200.c.1.a1.a1
Order $ 2^{5} \cdot 3^{2} \cdot 5^{2} $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$\OmegaPlus(4,5)$
Order: \(7200\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5^{2} \)
Index: $1$
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\left(\begin{array}{rrrr} 0 & 0 & 0 & 4 \\ 0 & 0 & 4 & 0 \\ 0 & 4 & 0 & 0 \\ 4 & 0 & 0 & 0 \end{array}\right), \left(\begin{array}{rrrr} 1 & 1 & 2 & 3 \\ 4 & 3 & 3 & 4 \\ 3 & 3 & 0 & 0 \\ 3 & 1 & 0 & 0 \end{array}\right), \left(\begin{array}{rrrr} 4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{array}\right)$ Copy content Toggle raw display
Derived length: $0$

The subgroup is the commutator subgroup (hence characteristic and normal), a direct factor, nonabelian, a Hall subgroup, and perfect (hence nonsolvable).

Ambient group ($G$) information

Description: $\OmegaPlus(4,5)$
Order: \(7200\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$0$

The ambient group is nonabelian and perfect (hence nonsolvable).

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$S_5\wr C_2$, of order \(28800\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $S_5\wr C_2$, of order \(28800\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5^{2} \)
$W$$A_5^2$, of order \(3600\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$\OmegaPlus(4,5)$
Complements:$C_1$
Maximal under-subgroups:$\SL(2,5):A_4$$\SL(2,5):A_4$$\SL(2,5):D_5$$\SL(2,5):D_5$$\SL(2,5):S_3$$\SL(2,5):S_3$$C_2\times A_5$$C_2\times A_5$

Other information

Möbius function$1$
Projective image$A_5^2$