Properties

Label 720.441.6.c1.a1
Order $ 2^{3} \cdot 3 \cdot 5 $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_5\times C_{12}$
Order: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $a^{2}, b^{40}, b^{30}, b^{15}, b^{12}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $D_{10}.S_3^2$
Order: \(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_5\times D_6^2$, of order \(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2^3\times F_5$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \)
$\operatorname{res}(S)$$C_2^2\times F_5$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(12\)\(\medspace = 2^{2} \cdot 3 \)
$W$$F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_{12}$
Normalizer:$C_{60}:C_4$
Normal closure:$C_{30}.D_6$
Core:$C_3\times D_{10}$
Minimal over-subgroups:$C_{30}.D_6$$C_{60}:C_4$
Maximal under-subgroups:$C_3\times D_{10}$$C_{60}$$C_5:C_{12}$$C_4\times D_5$$C_2\times C_{12}$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$1$
Projective image$D_5.S_3^2$