Properties

Label 720.441.12.b1.a1
Order $ 2^{2} \cdot 3 \cdot 5 $
Index $ 2^{2} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times D_{10}$
Order: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $a^{2}, c, b^{12}, b^{30}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $D_{10}.S_3^2$
Order: \(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $D_6$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, an A-group, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$F_5\times D_6^2$, of order \(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2^2\times F_5$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
$W$$C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)

Related subgroups

Centralizer:$C_3\times C_6$
Normalizer:$D_{10}.S_3^2$
Minimal over-subgroups:$C_3^2\times D_{10}$$C_6.D_{10}$$C_6\times F_5$$C_{30}:C_4$
Maximal under-subgroups:$C_{30}$$C_3\times D_5$$C_3\times D_5$$D_{10}$$C_2\times C_6$

Other information

Möbius function$-6$
Projective image$D_5.S_3^2$