Subgroup ($H$) information
| Description: | $C_3\times \He_3:S_4$ |
| Order: | \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \) |
| Index: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$ad^{3}, e^{2}, g^{3}, cf^{4}, b^{2}, f^{3}, e^{3}f^{3}, d^{2}$
|
| Derived length: | $3$ |
The subgroup is nonabelian and monomial (hence solvable).
Ambient group ($G$) information
| Description: | $S_4\times C_3^4.S_3^2$ |
| Order: | \(69984\)\(\medspace = 2^{5} \cdot 3^{7} \) |
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Derived length: | $3$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $S_4\times C_3^4.S_3^2$, of order \(69984\)\(\medspace = 2^{5} \cdot 3^{7} \) |
| $\operatorname{Aut}(H)$ | $C_6^2.C_3^4.C_2^4$ |
| $W$ | $C_5^3:C_6\times D_5$, of order \(7500\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{4} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $3$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | not computed |
| Projective image | $S_4\times C_3^4.S_3^2$ |