Properties

Label 691200.g.4.K
Order $ 2^{8} \cdot 3^{3} \cdot 5^{2} $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$\SOPlus(4,4):S_4$
Order: \(172800\)\(\medspace = 2^{8} \cdot 3^{3} \cdot 5^{2} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(2,3,10,8)(4,5)(11,14), (1,8)(2,9)(3,5)(4,6)(7,10)(12,13,14), (11,14)(12,13), (11,12)(13,14), (11,12,13)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and nonsolvable.

Ambient group ($G$) information

Description: $S_4\times S_5\wr C_2$
Order: \(691200\)\(\medspace = 2^{10} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian, nonsolvable, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_4\times S_5\wr C_2$, of order \(691200\)\(\medspace = 2^{10} \cdot 3^{3} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $S_4\times \POPlus(4,5)$, of order \(345600\)\(\medspace = 2^{9} \cdot 3^{3} \cdot 5^{2} \)
$W$$S_4\times \POPlus(4,5)$, of order \(345600\)\(\medspace = 2^{9} \cdot 3^{3} \cdot 5^{2} \)

Related subgroups

Centralizer: not computed
Normalizer:$S_4\times \POPlus(4,5)$
Normal closure:$S_4\times \POPlus(4,5)$
Core:$A_5^2:S_4$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$S_4\times S_5\wr C_2$