Subgroup ($H$) information
| Description: | $\SOPlus(4,4):S_4$ |
| Order: | \(172800\)\(\medspace = 2^{8} \cdot 3^{3} \cdot 5^{2} \) |
| Index: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Generators: |
$\langle(2,3,10,8)(4,5)(11,14), (1,8)(2,9)(3,5)(4,6)(7,10)(12,13,14), (11,14)(12,13), (11,12)(13,14), (11,12,13)\rangle$
|
| Derived length: | $3$ |
The subgroup is nonabelian and nonsolvable.
Ambient group ($G$) information
| Description: | $S_4\times S_5\wr C_2$ |
| Order: | \(691200\)\(\medspace = 2^{10} \cdot 3^{3} \cdot 5^{2} \) |
| Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
| Derived length: | $3$ |
The ambient group is nonabelian, nonsolvable, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $S_4\times S_5\wr C_2$, of order \(691200\)\(\medspace = 2^{10} \cdot 3^{3} \cdot 5^{2} \) |
| $\operatorname{Aut}(H)$ | $S_4\times \POPlus(4,5)$, of order \(345600\)\(\medspace = 2^{9} \cdot 3^{3} \cdot 5^{2} \) |
| $W$ | $S_4\times \POPlus(4,5)$, of order \(345600\)\(\medspace = 2^{9} \cdot 3^{3} \cdot 5^{2} \) |
Related subgroups
| Centralizer: | not computed |
| Normalizer: | $S_4\times \POPlus(4,5)$ |
| Normal closure: | $S_4\times \POPlus(4,5)$ |
| Core: | $A_5^2:S_4$ |
Other information
| Number of subgroups in this autjugacy class | $2$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | not computed |
| Projective image | $S_4\times S_5\wr C_2$ |