Properties

Label 6912.hm.54.a1
Order $ 2^{7} $
Index $ 2 \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times D_4^2$
Order: \(128\)\(\medspace = 2^{7} \)
Index: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(7,10)(8,12)(9,13)(11,14), (3,5)(4,6), (1,2)(3,4)(5,6)(8,12)(9,13)(10,11), (8,13)(9,12), (8,9)(12,13), (9,12)(10,11), (7,14)(8,13)(9,12)(10,11)\rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $(C_2\times D_6^2):S_4$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.(C_2^4\times A_4).C_2^4$
$\operatorname{Aut}(H)$ $C_2^6.C_2^2\wr D_4$, of order \(131072\)\(\medspace = 2^{17} \)
$W$$C_2^2\wr C_2$, of order \(32\)\(\medspace = 2^{5} \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$D_4^2:C_2^2$
Normal closure:$(C_2\times D_6^2):S_4$
Core:$C_2^3$
Minimal over-subgroups:$S_3\times D_4^2$$D_4^2:C_2^2$
Maximal under-subgroups:$C_2^3:D_4$$C_4^2:C_2^2$$D_4\times C_2^3$$C_2^3:D_4$$D_4^2$$D_4^2$$D_4^2$$D_4\times C_2^3$$C_2^3:D_4$$C_2^3:D_4$$C_2^3:D_4$$C_4^2:C_2^2$$D_4^2$$D_4^2$$D_4^2$

Other information

Number of subgroups in this autjugacy class$27$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$D_6^2:S_4$