Properties

Label 6912.hm.216.bb1
Order $ 2^{5} $
Index $ 2^{3} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times D_4$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(8,13)(10,11), (1,6)(2,3)(4,5)(8,13), (7,12)(8,10)(9,14)(11,13), (1,6)(2,5)(3,4)(7,9)(10,11)(12,14), (7,14)(8,13)(9,12)(10,11)\rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $(C_2\times D_6^2):S_4$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.(C_2^4\times A_4).C_2^4$
$\operatorname{Aut}(H)$ $C_2^6:(C_2\times S_4)$, of order \(3072\)\(\medspace = 2^{10} \cdot 3 \)
$W$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2^4$
Normalizer:$C_2\times D_4^2$
Normal closure:$(C_2\times D_6^2):S_4$
Core:$C_2$
Minimal over-subgroups:$D_4\times D_6$$D_4\times D_6$$D_4\times C_2^3$$D_4^2$$D_4^2$
Maximal under-subgroups:$C_2\times D_4$$C_2^4$$C_2\times D_4$$C_2\times D_4$$C_2^4$$C_2\times D_4$$C_2^2\times C_4$$C_2\times D_4$

Other information

Number of subgroups in this autjugacy class$108$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$D_6^2:S_4$