Properties

Label 6912.he.48.gb1
Order $ 2^{4} \cdot 3^{2} $
Index $ 2^{4} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3^2:C_4$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(2,4,6), (4,6)(7,9,14,12)(8,11)(10,13), (1,5)(2,6), (1,2,3,6,5,4)(7,9)(8,11)(10,13)(12,14), (7,14)(9,12), (1,3,5)(2,6,4)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $S_3^2:C_2\wr A_4$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.(C_2\times A_4).C_2^6$
$\operatorname{Aut}(H)$ $C_6^2:D_4$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
$W$$S_3^2:C_2^2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$D_6^2:C_2^2$
Normal closure:$(C_2\times D_6^2):D_4$
Core:$C_3:S_3$
Minimal over-subgroups:$C_6^2.D_4$$D_6\wr C_2$
Maximal under-subgroups:$S_3\times D_6$$C_2\times C_3^2:C_4$$C_6.D_6$$C_2^2:C_4$

Other information

Number of subgroups in this autjugacy class$24$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$S_3^2:C_2\wr A_4$