Properties

Label 6912.he.288.dj1
Order $ 2^{3} \cdot 3 $
Index $ 2^{5} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times D_4$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,2,3,6,5,4)(7,13)(8,14)(9,10)(11,12), (7,13,14,8)(9,11,12,10), (1,3,5)(2,6,4), (7,14)(8,13)(9,12)(10,11)\rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $S_3^2:C_2\wr A_4$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.(C_2\times A_4).C_2^6$
$\operatorname{Aut}(H)$ $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
$W$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_6\times D_4$
Normalizer:$D_{12}:C_2^4$
Normal closure:$D_4:D_6^2$
Core:$C_2$
Minimal over-subgroups:$C_3\times D_{12}$$C_6\times D_4$$S_3\times D_4$$C_6\times D_4$$C_6\times D_4$$S_3\times D_4$$D_4:C_6$$C_6\times D_4$$C_6\times D_4$$D_4:S_3$$D_4:C_6$$S_3\times D_4$$D_4:S_3$$S_3\times D_4$$S_3\times D_4$$S_3\times D_4$
Maximal under-subgroups:$C_2\times C_6$$C_2\times C_6$$C_{12}$$D_4$

Other information

Number of subgroups in this autjugacy class$72$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$0$
Projective image$D_6^2:(C_2\times A_4)$