Properties

Label 6451200.a.840._.CK
Order $ 2^{9} \cdot 3 \cdot 5 $
Index $ 2^{3} \cdot 3 \cdot 5 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^4.(F_5\times S_4)$
Order: \(7680\)\(\medspace = 2^{9} \cdot 3 \cdot 5 \)
Index: \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(2,14,6)(4,8,7)(5,11,13)(9,15,10)(18,21,20,19), (2,4)(6,7)(9,11)(13,15) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_2^4.A_8\times F_5$
Order: \(6451200\)\(\medspace = 2^{12} \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
Exponent: \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4.A_8\times F_5$, of order \(6451200\)\(\medspace = 2^{12} \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
$\operatorname{Aut}(H)$ $(C_5^3\times C_{10}).Q_8$, of order \(1105920\)\(\medspace = 2^{13} \cdot 3^{3} \cdot 5 \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$140$
Möbius function not computed
Projective image not computed