Properties

Label 6144.cq.4.C
Order $ 2^{9} \cdot 3 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^6:S_4$
Order: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,4)(2,3)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16), (1,14,4,16)(2,13,3,15) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is characteristic (hence normal), nonabelian, monomial (hence solvable), and rational. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_2^7.(C_2\times S_4)$
Order: \(6144\)\(\medspace = 2^{11} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^7.(D_4\times S_4)$, of order \(24576\)\(\medspace = 2^{13} \cdot 3 \)
$\operatorname{Aut}(H)$ $C_2^6.S_4^2$, of order \(36864\)\(\medspace = 2^{12} \cdot 3^{2} \)
$W$$C_2^5:(C_2\times S_4)$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2^7.(C_2\times S_4)$
Minimal over-subgroups:$C_2^7:S_4$$C_2^6.A_4.C_2^2$
Maximal under-subgroups:$C_2^6:A_4$$C_2^6:D_4$$C_2^2\wr S_3$$C_2^4:S_4$$C_2^4:S_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$D_5^3.C_2^2$