Properties

Label 608.44.8.a1.b1
Order $ 2^{2} \cdot 19 $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{38}$
Order: \(76\)\(\medspace = 2^{2} \cdot 19 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(38\)\(\medspace = 2 \cdot 19 \)
Generators: $a^{2}, c^{19}, c^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, central (hence abelian, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{38}.C_4^2$
Order: \(608\)\(\medspace = 2^{5} \cdot 19 \)
Exponent: \(76\)\(\medspace = 2^{2} \cdot 19 \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_2\times C_4$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Outer Automorphisms: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{18}\times C_2^4:C_3.D_4$
$\operatorname{Aut}(H)$ $S_3\times C_{18}$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
$\operatorname{res}(S)$$C_{18}$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(128\)\(\medspace = 2^{7} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{38}.C_4^2$
Normalizer:$C_{38}.C_4^2$
Minimal over-subgroups:$C_2\times C_{76}$$C_2\times C_{76}$$C_2^2\times C_{38}$
Maximal under-subgroups:$C_{38}$$C_{38}$$C_{38}$$C_2^2$
Autjugate subgroups:608.44.8.a1.a1608.44.8.a1.c1

Other information

Möbius function$0$
Projective image$C_2\times C_4$