Properties

Label 5760.fv.96.i1.a1
Order $ 2^{2} \cdot 3 \cdot 5 $
Index $ 2^{5} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times A_4$
Order: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Index: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $\langle(2,4,3), (1,3,2)(9,12,13,11,10), (1,4)(2,3), (1,2)(3,4)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $D_4\times A_4\times A_5$
Order: \(5760\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_4\times S_4\times S_5$, of order \(23040\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_4\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$W$$C_2\times A_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_5\times D_4$
Normalizer:$D_4\times D_5\times A_4$
Normal closure:$A_4\times A_5$
Core:$A_4$
Minimal over-subgroups:$C_{10}\times A_4$$C_{10}\times A_4$$C_{10}\times A_4$$D_5\times A_4$$D_5\times A_4$$D_5\times A_4$$D_5\times A_4$
Maximal under-subgroups:$C_2\times C_{10}$$C_{15}$$A_4$

Other information

Number of subgroups in this conjugacy class$6$
Möbius function$0$
Projective image$D_4\times A_4\times A_5$