Properties

Label 576.3964.3.b1.a1
Order $ 2^{6} \cdot 3 $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times C_2^3.C_2^3$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(3\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, c^{6}, b, c^{3}, d^{6}, d^{3}, c^{4}d^{4}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is maximal, nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $(C_6\times C_{12}).D_4$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^{16}.\PSL(2,7)$, of order \(12288\)\(\medspace = 2^{12} \cdot 3 \)
$\operatorname{Aut}(H)$ $C_2^{10}.C_2$, of order \(2048\)\(\medspace = 2^{11} \)
$\card{W}$\(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2^2\times C_6$
Normalizer:$C_3\times C_2^3.C_2^3$
Normal closure:$(C_6\times C_{12}).D_4$
Core:$C_2\times C_4:C_{12}$
Minimal over-subgroups:$(C_6\times C_{12}).D_4$
Maximal under-subgroups:$C_2\times C_4:C_{12}$$C_2\times C_4:C_{12}$$C_6.C_4^2$$C_6.C_4^2$$C_6.C_4^2$$C_6.C_4^2$$C_6.C_4^2$$C_2^3.C_2^3$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function not computed
Projective image not computed