Properties

Label 560.167.2.c1.c1
Order $ 2^{3} \cdot 5 \cdot 7 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4\times C_{35}$
Order: \(280\)\(\medspace = 2^{3} \cdot 5 \cdot 7 \)
Index: \(2\)
Exponent: \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)
Generators: $ac^{35}, c^{84}, c^{20}, bc^{105}, c^{70}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is normal, maximal, a direct factor, nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $D_4\times C_{70}$
Order: \(560\)\(\medspace = 2^{4} \cdot 5 \cdot 7 \)
Exponent: \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^4.C_2^5)$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\operatorname{Aut}(H)$ $C_2\times D_4\times C_{12}$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\operatorname{res}(S)$$C_2\times D_4\times C_{12}$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2\times C_{70}$
Normalizer:$D_4\times C_{70}$
Complements:$C_2$ $C_2$ $C_2$ $C_2$
Minimal over-subgroups:$D_4\times C_{70}$
Maximal under-subgroups:$C_2\times C_{70}$$C_2\times C_{70}$$C_{140}$$C_7\times D_4$$C_5\times D_4$
Autjugate subgroups:560.167.2.c1.a1560.167.2.c1.b1560.167.2.c1.d1

Other information

Möbius function$-1$
Projective image$C_2^3$