Properties

Label 5184.rj.1728.a1
Order $ 3 $
Index $ 2^{6} \cdot 3^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3$
Order: \(3\)
Index: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(3\)
Generators: $e^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_6^3:D_{12}$
Order: \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2\times C_6^2:D_{12}$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $(A_4\times C_3:S_3).C_2^5.C_2$
Outer Automorphisms: $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.(C_6\times A_4).C_2^6.C_2$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_6^3:C_{12}$
Normalizer:$C_6^3:D_{12}$
Complements:$C_2\times C_6^2:D_{12}$
Minimal over-subgroups:$C_3^2$$C_3^2$$C_3^2$$C_6$$C_6$$C_6$$C_6$$C_6$$C_6$$C_6$$S_3$
Maximal under-subgroups:$C_1$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_6^3:D_{12}$