Subgroup ($H$) information
| Description: | $A_5^8.C_2\wr C_4.C_2^2$ |
| Order: | \(42998169600000000\)\(\medspace = 2^{24} \cdot 3^{8} \cdot 5^{8} \) |
| Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Exponent: | \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \) |
| Generators: |
$\langle(28,30,29), (1,27,2,30,3,26,4,29)(5,28)(6,8,7,10,9)(11,15,13,14,12)(16,18,19,17,20) \!\cdots\! \rangle$
|
| Derived length: | $3$ |
The subgroup is nonabelian and nonsolvable. Whether it is rational has not been computed.
Ambient group ($G$) information
| Description: | $A_5^8.C_4^3.S_4.C_2$ |
| Order: | \(515978035200000000\)\(\medspace = 2^{26} \cdot 3^{9} \cdot 5^{8} \) |
| Exponent: | \(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \) |
| Derived length: | $4$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | Group of order \(1031956070400000000\)\(\medspace = 2^{27} \cdot 3^{9} \cdot 5^{8} \) |
| $\operatorname{Aut}(H)$ | Group of order \(343985356800000000\)\(\medspace = 2^{27} \cdot 3^{8} \cdot 5^{8} \) |
| $\card{W}$ | not computed |
Related subgroups
| Centralizer: | not computed |
| Normalizer: | not computed |
| Normal closure: | not computed |
| Core: | not computed |
| Autjugate subgroups: | Subgroups are not computed up to automorphism. |
Other information
| Number of subgroups in this conjugacy class | $3$ |
| Möbius function | not computed |
| Projective image | not computed |