Subgroup ($H$) information
| Description: | $C_3^4.D_6\wr C_3$ |
| Order: | \(419904\)\(\medspace = 2^{6} \cdot 3^{8} \) |
| Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
| Generators: |
$\langle(11,14)(13,17), (4,9)(10,15)(11,14)(13,17), (5,10,15), (2,9,4), (10,15) \!\cdots\! \rangle$
|
| Derived length: | $3$ |
The subgroup is characteristic (hence normal), nonabelian, and solvable. Whether it is a direct factor, a semidirect factor, or monomial has not been computed.
Ambient group ($G$) information
| Description: | $S_3\times C_3^6.A_4^2:D_4$ |
| Order: | \(5038848\)\(\medspace = 2^{8} \cdot 3^{9} \) |
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Derived length: | $4$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
| Description: | $C_2\times C_6$ |
| Order: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Automorphism Group: | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Outer Automorphisms: | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^6.C_2^6:S_3^3$, of order \(10077696\)\(\medspace = 2^{9} \cdot 3^{9} \) |
| $\operatorname{Aut}(H)$ | $C_3^6.C_2^6:S_3^3$, of order \(10077696\)\(\medspace = 2^{9} \cdot 3^{9} \) |
| $\card{W}$ | not computed |
Related subgroups
| Centralizer: | not computed |
| Normalizer: | $S_3\times C_3^6.A_4^2:D_4$ |
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | not computed |
| Projective image | not computed |