Properties

Label 486.254.3.a1
Order $ 2 \cdot 3^{4} $
Index $ 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6\times \He_3$
Order: \(162\)\(\medspace = 2 \cdot 3^{4} \)
Index: \(3\)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\left(\begin{array}{rrrr} 0 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 \\ 2 & 0 & 1 & 2 \\ 1 & 0 & 0 & 2 \end{array}\right), \left(\begin{array}{rrrr} 2 & 0 & 2 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 2 & 0 & 1 & 1 \end{array}\right), \left(\begin{array}{rrrr} 1 & 2 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 2 & 2 & 1 \\ 0 & 1 & 2 & 0 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 2 \\ 0 & 2 & 0 & 0 \\ 2 & 0 & 2 & 2 \\ 1 & 0 & 0 & 0 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & 2 & 2 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is normal, maximal, a semidirect factor, nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_6.C_3^4$
Order: \(486\)\(\medspace = 2 \cdot 3^{5} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_3$
Order: \(3\)
Exponent: \(3\)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3:S_3.\SO(5,3)$, of order \(8398080\)\(\medspace = 2^{8} \cdot 3^{8} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_3^4:(S_3\times \GL(2,3))$, of order \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
$\operatorname{res}(S)$$C_3^4:(S_3\times \GL(2,3))$, of order \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(9\)\(\medspace = 3^{2} \)
$W$$C_3^3$, of order \(27\)\(\medspace = 3^{3} \)

Related subgroups

Centralizer:$C_3\times C_6$
Normalizer:$C_6.C_3^4$
Complements:$C_3$
Minimal over-subgroups:$C_6.C_3^4$
Maximal under-subgroups:$C_3\times \He_3$$C_3^2\times C_6$$C_2\times \He_3$

Other information

Number of subgroups in this autjugacy class$40$
Number of conjugacy classes in this autjugacy class$40$
Möbius function$-1$
Projective image$C_3^4$