Subgroup ($H$) information
Description: | $C_6\times \He_3$ |
Order: | \(162\)\(\medspace = 2 \cdot 3^{4} \) |
Index: | \(3\) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Generators: |
$\left(\begin{array}{rrrr}
0 & 0 & 0 & 2 \\
0 & 1 & 0 & 0 \\
2 & 0 & 1 & 2 \\
1 & 0 & 0 & 2
\end{array}\right), \left(\begin{array}{rrrr}
2 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
2 & 0 & 1 & 1
\end{array}\right), \left(\begin{array}{rrrr}
1 & 2 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 2 & 2 & 1 \\
0 & 1 & 2 & 0
\end{array}\right), \left(\begin{array}{rrrr}
1 & 0 & 0 & 2 \\
0 & 2 & 0 & 0 \\
2 & 0 & 2 & 2 \\
1 & 0 & 0 & 0
\end{array}\right), \left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 2 \\
0 & 0 & 1 & 0 \\
0 & 1 & 2 & 0
\end{array}\right)$
|
Nilpotency class: | $2$ |
Derived length: | $2$ |
The subgroup is normal, maximal, a semidirect factor, nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.
Ambient group ($G$) information
Description: | $C_6.C_3^4$ |
Order: | \(486\)\(\medspace = 2 \cdot 3^{5} \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Nilpotency class: | $2$ |
Derived length: | $2$ |
The ambient group is nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.
Quotient group ($Q$) structure
Description: | $C_3$ |
Order: | \(3\) |
Exponent: | \(3\) |
Automorphism Group: | $C_2$, of order \(2\) |
Outer Automorphisms: | $C_2$, of order \(2\) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3^3:S_3.\SO(5,3)$, of order \(8398080\)\(\medspace = 2^{8} \cdot 3^{8} \cdot 5 \) |
$\operatorname{Aut}(H)$ | $C_3^4:(S_3\times \GL(2,3))$, of order \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \) |
$\operatorname{res}(S)$ | $C_3^4:(S_3\times \GL(2,3))$, of order \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(9\)\(\medspace = 3^{2} \) |
$W$ | $C_3^3$, of order \(27\)\(\medspace = 3^{3} \) |
Related subgroups
Centralizer: | $C_3\times C_6$ | ||
Normalizer: | $C_6.C_3^4$ | ||
Complements: | $C_3$ | ||
Minimal over-subgroups: | $C_6.C_3^4$ | ||
Maximal under-subgroups: | $C_3\times \He_3$ | $C_3^2\times C_6$ | $C_2\times \He_3$ |
Other information
Number of subgroups in this autjugacy class | $40$ |
Number of conjugacy classes in this autjugacy class | $40$ |
Möbius function | $-1$ |
Projective image | $C_3^4$ |