Properties

Label 48000.ba.2000.d1
Order $ 2^{3} \cdot 3 $
Index $ 2^{4} \cdot 5^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{12}$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(2000\)\(\medspace = 2^{4} \cdot 5^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(3,5)(6,9)(7,10)(11,12)(13,14), (1,2,4)(6,9)(7,10)(11,12)(13,14), (6,7,9,10)(11,13,12,14), (6,9)(7,10)(11,12)(13,14)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $D_5^2.C_2^2\times S_5$
Order: \(48000\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5:D_5.A_4.C_4.S_5$
$\operatorname{Aut}(H)$ $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_6.C_2^4$
Normalizer:$D_{12}:C_2^3$
Normal closure:$C_5:F_5\times S_5$
Core:$C_1$
Minimal over-subgroups:$C_6\times F_5$$C_2^2\times C_{12}$$C_4\times D_6$$C_4\times D_6$
Maximal under-subgroups:$C_2\times C_6$$C_{12}$$C_{12}$$C_2\times C_4$

Other information

Number of subgroups in this autjugacy class$250$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$D_5^2.C_2^2\times S_5$