Properties

Label 480.1023.3.a1.a1
Order $ 2^{5} \cdot 5 $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^4:C_{10}$
Order: \(160\)\(\medspace = 2^{5} \cdot 5 \)
Index: \(3\)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $\left(\begin{array}{rr} 9 & 5 \\ 0 & 19 \end{array}\right), \left(\begin{array}{rr} 11 & 10 \\ 0 & 11 \end{array}\right), \left(\begin{array}{rr} 1 & 10 \\ 10 & 1 \end{array}\right), \left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 9 & 10 \\ 10 & 19 \end{array}\right), \left(\begin{array}{rr} 11 & 0 \\ 0 & 11 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is maximal, nonabelian, a Hall subgroup, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_5\times \GL(2,\mathbb{Z}/4)$
Order: \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^5.D_6$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\operatorname{Aut}(H)$ $C_2^7.D_6$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\operatorname{res}(S)$$C_2^4\times C_4$, of order \(64\)\(\medspace = 2^{6} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2\times C_{10}$
Normalizer:$C_2^4:C_{10}$
Normal closure:$C_5\times \GL(2,\mathbb{Z}/4)$
Core:$C_2^3\times C_{10}$
Minimal over-subgroups:$C_5\times \GL(2,\mathbb{Z}/4)$
Maximal under-subgroups:$C_2^3\times C_{10}$$D_4\times C_{10}$$C_2^2:C_{20}$$D_4\times C_{10}$$C_2^2:C_{20}$$D_4\times C_{10}$$C_2^2:C_{20}$$C_2^2\wr C_2$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-1$
Projective image$C_2\times S_4$