Properties

Label 4608.ss.4.I
Order $ 2^{7} \cdot 3^{2} $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^5.C_6^2$
Order: \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(8,15)(9,10)(11,13)(12,14), (1,3,2)(4,6)(5,7)(8,15)(9,10)(11,13)(12,14) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), and metabelian.

Ambient group ($G$) information

Description: $A_4\times D_4^2:S_3$
Order: \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^4:(C_2^2\times C_4)$, of order \(73728\)\(\medspace = 2^{13} \cdot 3^{2} \)
$\operatorname{Aut}(H)$ $C_2^2.D_6^2.C_2^5$
$\operatorname{res}(S)$$C_{10}:D_5^3$, of order \(10000\)\(\medspace = 2^{4} \cdot 5^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(12\)\(\medspace = 2^{2} \cdot 3 \)
$W$$C_2^3\times A_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_{12}$
Normalizer:$C_2^6:C_6^2$
Normal closure:$C_2^6:C_6^2$
Core:$C_2^2:C_{12}^2$
Minimal over-subgroups:$C_2^6:C_6^2$
Maximal under-subgroups:$C_2^2:C_{12}^2$$C_2^4.C_6^2$$C_2^4.C_6^2$$C_2^4:C_6^2$$C_2^4.C_6^2$$C_2^2\times D_4\times C_{12}$$C_4\times D_4\times A_4$$C_4\times D_4\times A_4$$C_{12}^2:C_2$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$(\SO(3,7)\times S_4^2).C_2^2$