Properties

Label 4608.pc.192.O
Order $ 2^{3} \cdot 3 $
Index $ 2^{6} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times C_6$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(4,5,7), (10,12)(13,15), (8,14)(9,11), (1,3)(4,7,5)(8,14)(9,11)(10,15)(12,13)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Ambient group ($G$) information

Description: $C_2^5.D_6^2$
Order: \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.C_3^3.C_2^6$
$\operatorname{Aut}(H)$ $C_2\times \GL(3,2)$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
$\card{W}$\(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2^3\times C_6$
Normalizer:$C_2^4:D_6$
Normal closure:$C_2^2\times A_4\times D_6$
Core:$C_2^2$
Minimal over-subgroups:$C_2^3\times A_4$$C_6\times D_6$$C_6\times D_4$$C_2^2\times D_6$$C_2^2\times D_6$$C_6:D_4$$C_2^2:C_{12}$$C_6.D_4$$C_2^3\times C_6$
Maximal under-subgroups:$C_2\times C_6$$C_2\times C_6$$C_2\times C_6$$C_2\times C_6$$C_2^3$

Other information

Number of subgroups in this autjugacy class$72$
Number of conjugacy classes in this autjugacy class$3$
Möbius function not computed
Projective image not computed