Properties

Label 4608.pc.192.E
Order $ 2^{3} \cdot 3 $
Index $ 2^{6} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times A_4$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(4,7)(5,6), (4,5,7), (4,5)(6,7)(8,14)(9,11)(10,12)(13,15), (4,6)(5,7)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_2^5.D_6^2$
Order: \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2^4:D_6$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2^8.S_3^2$, of order \(9216\)\(\medspace = 2^{10} \cdot 3^{2} \)
Outer Automorphisms: $C_2^3:S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.C_3^3.C_2^6$
$\operatorname{Aut}(H)$ $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\card{W}$\(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$(C_2\times C_{12}):D_4$
Normalizer:$C_2^5.D_6^2$
Minimal over-subgroups:$C_6\times A_4$$C_2^2\times A_4$$C_2^2\times A_4$$C_2^2\times A_4$$C_2\times S_4$$C_2\times S_4$$C_2\times S_4$$C_2\times S_4$$C_4\times A_4$$A_4:C_4$
Maximal under-subgroups:$A_4$$C_2^3$$C_6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed