Properties

Label 43200.be.360.u1
Order $ 2^{3} \cdot 3 \cdot 5 $
Index $ 2^{3} \cdot 3^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times A_5$
Order: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Index: \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $\langle(2,3)(4,5)(6,8)(7,9), (1,12,14)(2,3)(4,5)(6,8)(7,9), (2,3)(4,5)(6,8)(7,9)(11,12)(13,14)\rangle$ Copy content Toggle raw display
Derived length: $1$

The subgroup is nonabelian, an A-group, and nonsolvable.

Ambient group ($G$) information

Description: $A_4\times A_5^2$
Order: \(43200\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, an A-group, and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_4\times S_5\wr C_2$, of order \(691200\)\(\medspace = 2^{10} \cdot 3^{3} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $S_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
$W$$A_5$, of order \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_2^4$
Normalizer:$C_2^4\times A_5$
Normal closure:$C_2^2\times A_5^2$
Core:$A_5$
Minimal over-subgroups:$D_5\times A_5$$S_3\times A_5$$C_2^2\times A_5$$C_2^2\times A_5$$C_2^2\times A_5$$C_2^2\times A_5$
Maximal under-subgroups:$A_5$$C_2\times A_4$$D_{10}$$D_6$

Other information

Number of subgroups in this autjugacy class$90$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$A_4\times A_5^2$