Properties

Label 43200.be.300.l1
Order $ 2^{4} \cdot 3^{2} $
Index $ 2^{2} \cdot 3 \cdot 5^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_6^2$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Index: \(300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,13,12)(2,3)(4,5)(6,10,7), (2,5)(3,4), (2,3)(4,5), (1,13)(2,4)(3,5)(11,14), (2,3)(4,5)(7,10)(8,9), (2,5)(3,4)(6,10,7)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.

Ambient group ($G$) information

Description: $A_4\times A_5^2$
Order: \(43200\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, an A-group, and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_4\times S_5\wr C_2$, of order \(691200\)\(\medspace = 2^{10} \cdot 3^{3} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $D_6^2:(C_2\times S_4)$, of order \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
$W$$C_3\times S_3^2$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$A_4\times S_3^2$
Normal closure:$C_2^2\times A_5^2$
Core:$C_2^2$
Minimal over-subgroups:$\GL(2,4):C_2^3$$A_4\times S_3^2$
Maximal under-subgroups:$S_3\times D_6$$S_3\times D_6$$S_3\times D_6$$C_6\times D_6$$C_6:D_6$$C_2^2\times D_6$

Other information

Number of subgroups in this autjugacy class$100$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$A_4\times A_5^2$