Properties

Label 43200.be.270.a1
Order $ 2^{5} \cdot 5 $
Index $ 2 \cdot 3^{3} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3\times D_{10}$
Order: \(160\)\(\medspace = 2^{5} \cdot 5 \)
Index: \(270\)\(\medspace = 2 \cdot 3^{3} \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $\langle(2,5)(3,4), (2,3)(4,5), (2,5)(3,4)(11,13)(12,14), (2,3)(4,5)(11,14)(12,13), (6,7,10,9,8)(11,14)(12,13), (2,3)(4,5)(6,9)(7,10)(11,12)(13,14)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $A_4\times A_5^2$
Order: \(43200\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, an A-group, and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_4\times S_5\wr C_2$, of order \(691200\)\(\medspace = 2^{10} \cdot 3^{3} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $C_2^4.A_8\times F_5$, of order \(6451200\)\(\medspace = 2^{12} \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
$W$$C_3^2\times D_5$, of order \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_2^4$
Normalizer:$D_5\times A_4^2$
Normal closure:$C_2^2\times A_5^2$
Core:$C_2^2$
Minimal over-subgroups:$C_2^4\times A_5$$C_2\times A_4\times D_{10}$$C_2\times A_4\times D_{10}$$D_5\times C_2^2:A_4$
Maximal under-subgroups:$C_2^2\times D_{10}$$C_2^2\times D_{10}$$C_2^2\times D_{10}$$C_2^2\times D_{10}$$C_2^2\times D_{10}$$C_2^3\times C_{10}$$C_2^2\times D_{10}$$C_2^5$

Other information

Number of subgroups in this autjugacy class$60$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$A_4\times A_5^2$