Properties

Label 43200.be.2160.q1
Order $ 2^{2} \cdot 5 $
Index $ 2^{4} \cdot 3^{3} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{10}$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Index: \(2160\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $\langle(6,9)(7,10)(11,13)(12,14), (6,7,10,9,8), (11,13)(12,14)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $A_4\times A_5^2$
Order: \(43200\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, an A-group, and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_4\times S_5\wr C_2$, of order \(691200\)\(\medspace = 2^{10} \cdot 3^{3} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
$W$$D_5$, of order \(10\)\(\medspace = 2 \cdot 5 \)

Related subgroups

Centralizer:$C_2^2\times A_4$
Normalizer:$C_2\times A_4\times D_{10}$
Normal closure:$A_5^2$
Core:$C_1$
Minimal over-subgroups:$C_2\times A_5$$D_5^2$$C_3\times D_{10}$$S_3\times D_5$$C_2\times D_{10}$$C_2\times D_{10}$$C_2\times D_{10}$
Maximal under-subgroups:$C_{10}$$D_5$$D_5$$C_2^2$

Other information

Number of subgroups in this autjugacy class$180$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$-16$
Projective image$A_4\times A_5^2$