Properties

Label 43200.be.100.b1
Order $ 2^{4} \cdot 3^{3} $
Index $ 2^{2} \cdot 5^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$A_4\times S_3^2$
Order: \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Index: \(100\)\(\medspace = 2^{2} \cdot 5^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,13,12)(2,3)(4,5)(6,10,7), (2,5)(3,4), (2,4,5), (2,3)(4,5), (1,13)(2,4)(3,5)(11,14), (2,3)(4,5)(7,10)(8,9), (2,5)(3,4)(6,10,7)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $A_4\times A_5^2$
Order: \(43200\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, an A-group, and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_4\times S_5\wr C_2$, of order \(691200\)\(\medspace = 2^{10} \cdot 3^{3} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $D_6^2:D_6$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
$W$$A_4\times S_3^2$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$A_4\times S_3^2$
Normal closure:$A_4\times A_5^2$
Core:$A_4$
Minimal over-subgroups:$S_3\times A_4\times A_5$
Maximal under-subgroups:$C_6^2:C_6$$C_6^2:C_6$$A_4\times D_6$$D_6^2$$C_3\times S_3^2$

Other information

Number of subgroups in this autjugacy class$100$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$A_4\times A_5^2$