Properties

Label 3840.hv.3.a1
Order $ 2^{8} \cdot 5 $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{10}.D_4^2$
Order: \(1280\)\(\medspace = 2^{8} \cdot 5 \)
Index: \(3\)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $\langle(5,7), (5,8)(6,7), (5,7)(6,8)(9,11)(10,12), (1,3,2,4)(5,6)(7,8)(9,14,11,10,12) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $D_{10}.D_4\times S_4$
Order: \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times A_4).C_2^6.C_2^5$
$\operatorname{Aut}(H)$ Group of order \(1310720\)\(\medspace = 2^{18} \cdot 5 \)
$\card{\operatorname{res}(S)}$\(20480\)\(\medspace = 2^{12} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_2^3\times F_5$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$D_{10}.D_4^2$
Normal closure:$D_{10}.D_4\times S_4$
Core:$D_{10}.C_2^5$
Minimal over-subgroups:$D_{10}.D_4\times S_4$
Maximal under-subgroups:$D_{10}.C_2^5$$D_{10}.C_2^5$$(C_2^3\times C_{20}):C_4$$D_{10}.(C_4\times D_4)$$C_2\times C_{20}:C_4^2$$C_2\times C_4^2:F_5$$D_{10}.(C_4\times D_4)$$C_4\times D_4\times D_{10}$$D_{10}.C_2^5$$(C_2^3\times C_{20}):C_4$$D_{10}.(C_4\times D_4)$$D_5.D_4^2$$D_5.D_4^2$$C_2^2.D_4^2$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2\times F_5\times S_4$