Properties

Label 3840.hv.20.j1
Order $ 2^{6} \cdot 3 $
Index $ 2^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4:C_4\times D_6$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,2)(3,4)(5,6,7), (1,3,2,4), (1,3)(2,4)(5,7,6)(9,10,11,12)(13,15), (1,3,2,4)(5,7,6)(13,15), (5,7,6), (5,6,7)(9,11)(10,12), (5,7)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $D_{10}.D_4\times S_4$
Order: \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times A_4).C_2^6.C_2^5$
$\operatorname{Aut}(H)$ $C_3:(C_2^8.C_2^5)$
$\operatorname{res}(S)$$S_3\times C_2^5:D_4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_4:C_4\times D_6$
Normal closure:$D_{10}.D_4\times S_4$
Core:$C_2\times C_4$
Minimal over-subgroups:$C_{20}:C_4\times D_6$$C_2^2.D_4\times S_4$
Maximal under-subgroups:$C_{12}:C_2^3$$C_{12}:C_2^3$$C_2\times C_4:C_{12}$$C_2^2.D_{12}$$C_2^3.D_6$$D_6.D_4$$C_2^3.D_4$

Other information

Number of subgroups in this autjugacy class$20$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2\times F_5\times S_4$