Properties

Label 3840.hv.2.e1
Order $ 2^{7} \cdot 3 \cdot 5 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{10}.\GL(2,\mathbb{Z}/4)$
Order: \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \)
Index: \(2\)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(1,2)(3,4)(5,8,6), (1,2)(3,4)(6,7,8)(9,14,11,10,12)(13,15), (1,3)(2,4)(5,6,8) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is normal, maximal, a semidirect factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $D_{10}.D_4\times S_4$
Order: \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times A_4).C_2^6.C_2^5$
$\operatorname{Aut}(H)$ $(C_2^2\times D_5\times A_4).C_2^5$
$\card{\operatorname{res}(S)}$\(15360\)\(\medspace = 2^{10} \cdot 3 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2\times F_5\times S_4$, of order \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$D_{10}.D_4\times S_4$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$D_{10}.D_4\times S_4$
Maximal under-subgroups:$C_2^2\times A_4\times F_5$$A_4:C_4\times D_{10}$$C_2^2\times A_4:F_5$$D_5.\GL(2,\mathbb{Z}/4)$$D_{10}.(C_4\times D_4)$$C_2\times D_{10}.D_6$$C_2^2.\GL(2,\mathbb{Z}/4)$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$C_2\times F_5\times S_4$