Properties

Label 3840.hv.160.p1
Order $ 2^{3} \cdot 3 $
Index $ 2^{5} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times D_6$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(160\)\(\medspace = 2^{5} \cdot 5 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(5,7), (1,2)(3,4)(5,7,8), (5,8,7), (1,2)(3,4)(9,14)(11,12)(13,15)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, an A-group, and rational.

Ambient group ($G$) information

Description: $D_{10}.D_4\times S_4$
Order: \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times A_4).C_2^6.C_2^5$
$\operatorname{Aut}(H)$ $S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$\operatorname{res}(S)$$C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(128\)\(\medspace = 2^{7} \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_2^2.D_4$
Normalizer:$C_4:C_4\times D_6$
Normal closure:$D_{10}\times S_4$
Core:$C_2$
Minimal over-subgroups:$S_3\times D_{10}$$C_2^2\times S_4$$C_2^2\times D_6$$C_4\times D_6$
Maximal under-subgroups:$C_2\times C_6$$D_6$$D_6$$D_6$$C_2^3$

Other information

Number of subgroups in this autjugacy class$40$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$C_2^2\times F_5\times S_4$