Properties

Label 3840.hv.12.g1
Order $ 2^{6} \cdot 5 $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^4:F_5$
Order: \(320\)\(\medspace = 2^{6} \cdot 5 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $\langle(5,7), (5,7)(6,8)(9,11)(10,12), (9,11,12,14,10), (1,3)(2,4)(5,6)(7,8)(9,10,11,12) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $D_{10}.D_4\times S_4$
Order: \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times A_4).C_2^6.C_2^5$
$\operatorname{Aut}(H)$ $F_5\times C_2^6:(C_2\times S_4)$, of order \(61440\)\(\medspace = 2^{12} \cdot 3 \cdot 5 \)
$\operatorname{res}(S)$$C_2^4:D_4\times F_5$, of order \(2560\)\(\medspace = 2^{9} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_2^3\times F_5$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$D_{10}.D_4^2$
Normal closure:$C_2^2\times F_5\times S_4$
Core:$C_2\times D_{10}$
Minimal over-subgroups:$(C_2^3\times C_{20}):C_4$$D_{10}.(C_4\times D_4)$$D_{10}.C_2^5$
Maximal under-subgroups:$C_2^3\times D_{10}$$C_2^3\times F_5$$C_2^3\times F_5$$C_2^3:F_5$$C_2^3:F_5$$C_2^4:C_4$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$C_2\times F_5\times S_4$