Subgroup ($H$) information
| Description: | $D_{10}.D_4\times S_4$ |
| Order: | \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \) |
| Index: | $1$ |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Generators: |
$\langle(1,2)(3,4)(5,8,6), (1,3,2,4)(5,6)(7,8)(9,14,11,10,12), (1,3)(2,4)(5,6,8) \!\cdots\! \rangle$
|
| Derived length: | $3$ |
The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, and a Hall subgroup. Whether it is monomial has not been computed.
Ambient group ($G$) information
| Description: | $D_{10}.D_4\times S_4$ |
| Order: | \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
| Description: | $C_1$ |
| Order: | $1$ |
| Exponent: | $1$ |
| Automorphism Group: | $C_1$, of order $1$ |
| Outer Automorphisms: | $C_1$, of order $1$ |
| Derived length: | $0$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_5\times A_4).C_2^6.C_2^5$ |
| $\operatorname{Aut}(H)$ | $(C_5\times A_4).C_2^6.C_2^5$ |
| $W$ | $C_2\times F_5\times S_4$, of order \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \) |
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | not computed |
| Projective image | $C_2\times F_5\times S_4$ |