Properties

Label 3840.hv.1.a1
Order $ 2^{8} \cdot 3 \cdot 5 $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{10}.D_4\times S_4$
Order: \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
Index: $1$
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(1,2)(3,4)(5,8,6), (1,3,2,4)(5,6)(7,8)(9,14,11,10,12), (1,3)(2,4)(5,6,8) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, and a Hall subgroup. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $D_{10}.D_4\times S_4$
Order: \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times A_4).C_2^6.C_2^5$
$\operatorname{Aut}(H)$ $(C_5\times A_4).C_2^6.C_2^5$
$W$$C_2\times F_5\times S_4$, of order \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$D_{10}.D_4\times S_4$
Complements:$C_1$
Maximal under-subgroups:$C_4\times D_{10}\times S_4$$C_2^2\times F_5\times S_4$$(C_2^3\times C_{20}):C_{12}$$(C_4\times D_{10}).S_4$$D_{10}.\GL(2,\mathbb{Z}/4)$$C_{20}:C_4\times S_4$$D_{10}.D_4^2$$C_{20}:C_4\times D_6$$C_2^2.D_4\times S_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2\times F_5\times S_4$