Properties

Label 3840.ho.2.a1
Order $ 2^{7} \cdot 3 \cdot 5 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times F_5\times S_4$
Order: \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \)
Index: \(2\)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(6,7)(14,15), (1,4,2,3,5), (2,3)(4,5), (1,3,4,5,2)(8,9)(10,14)(11,15)(12,13) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is normal, maximal, a direct factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_2^3\times F_5\times S_4$
Order: \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_5\times S_4\times C_2^6.\PSL(2,7)$
$\operatorname{Aut}(H)$ $F_5\times S_4\times C_2^2:S_4$
$\card{\operatorname{res}(S)}$\(46080\)\(\medspace = 2^{10} \cdot 3^{2} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$F_5\times S_4$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_2^3\times F_5\times S_4$
Complements:$C_2$ $C_2$ $C_2$ $C_2$ $C_2$ $C_2$
Minimal over-subgroups:$C_2^3\times F_5\times S_4$
Maximal under-subgroups:$C_2\times F_5\times S_4$$C_2\times D_{10}\times S_4$$C_2^2\times A_4\times F_5$$C_2^2\times A_4:F_5$$D_{10}.C_2^5$$C_2\times D_6\times F_5$$C_2^5.D_6$

Other information

Number of subgroups in this autjugacy class$28$
Number of conjugacy classes in this autjugacy class$28$
Möbius function not computed
Projective image$C_2\times F_5\times S_4$