Subgroup ($H$) information
| Description: | $C_2^2$ |
| Order: | \(4\)\(\medspace = 2^{2} \) |
| Index: | \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \) |
| Exponent: | \(2\) |
| Generators: |
$\langle(6,7)(10,11), (6,7)(8,9)(10,11)(12,13)(14,15)\rangle$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Ambient group ($G$) information
| Description: | $C_2\times \GL(2,\mathbb{Z}/4):F_5$ |
| Order: | \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
| Description: | $C_2\times F_5\times S_4$ |
| Order: | \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Automorphism Group: | $C_2^2\times F_5\times S_4$, of order \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \) |
| Outer Automorphisms: | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
| Nilpotency class: | $-1$ |
| Derived length: | $3$ |
The quotient is nonabelian and monomial (hence solvable).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_5\times A_4).C_2^4.C_2^6$ |
| $\operatorname{Aut}(H)$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_2$, of order \(2\) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(30720\)\(\medspace = 2^{11} \cdot 3 \cdot 5 \) |
| $W$ | $C_1$, of order $1$ |
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | not computed |
| Projective image | $C_2\times F_5\times S_4$ |