Properties

Label 3840.ft.8.F
Order $ 2^{5} \cdot 3 \cdot 5 $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3:D_{30}$
Order: \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(8,9)(14,15), (1,2)(3,5)(6,10)(7,11)(8,13)(9,12), (12,13)(14,15), (6,7) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_2\times \GL(2,\mathbb{Z}/4):F_5$
Order: \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2\times C_4$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Outer Automorphisms: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times A_4).C_2^4.C_2^6$
$\operatorname{Aut}(H)$ $F_5\times S_4^2$, of order \(11520\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \)
$\operatorname{res}(\operatorname{Aut}(G))$$D_4\times F_5\times S_4$, of order \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$C_2\times F_5\times S_4$, of order \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2\times \GL(2,\mathbb{Z}/4):F_5$
Complements:$C_2\times C_4$ $C_2\times C_4$ $C_2\times C_4$ $C_2\times C_4$
Minimal over-subgroups:$C_{10}:\GL(2,\mathbb{Z}/4)$$C_2\times D_{10}\times S_4$$C_{10}:\GL(2,\mathbb{Z}/4)$
Maximal under-subgroups:$C_2^3:C_{30}$$C_{10}:S_4$$C_{10}:S_4$$C_2^3:D_{10}$$C_2\times D_{30}$$C_2^2\times S_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2\times F_5\times S_4$