Properties

Label 3840.ft.6.A
Order $ 2^{7} \cdot 5 $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^5:F_5$
Order: \(640\)\(\medspace = 2^{7} \cdot 5 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $\langle(6,7)(12,13), (2,3,5,4)(6,11)(7,10)(14,15), (8,9)(14,15), (2,5)(3,4), (12,13) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_2\times \GL(2,\mathbb{Z}/4):F_5$
Order: \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $S_3$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $C_1$, of order $1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times A_4).C_2^4.C_2^6$
$\operatorname{Aut}(H)$ $(C_2^5\times D_5).C_2^4.C_2^4.\PSL(2,7)$
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^4:D_6\times F_5$, of order \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$D_6\times F_5$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_2^4$
Normalizer:$C_2\times \GL(2,\mathbb{Z}/4):F_5$
Complements:$S_3$ $S_3$
Minimal over-subgroups:$A_4\times C_2^3:F_5$$D_{10}.D_4^2$
Maximal under-subgroups:$C_2^4\times D_{10}$$C_2^4\times F_5$$C_2^4\times F_5$$C_2^4:F_5$$C_2^4:F_5$$C_2^4:F_5$$C_2^4:F_5$$C_2^4:F_5$$C_2^4:F_5$$C_2^5:C_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2\times F_5\times S_4$