Properties

Label 3840.ft.5.a1
Order $ 2^{8} \cdot 3 $
Index $ 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^6.D_6$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Index: \(5\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(2,3,5,4)(6,11)(7,10)(14,15), (2,5)(3,4)(6,10,7,11)(12,15)(13,14), (8,12,15) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is maximal, nonabelian, a Hall subgroup, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_2\times \GL(2,\mathbb{Z}/4):F_5$
Order: \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times A_4).C_2^4.C_2^6$
$\operatorname{Aut}(H)$ $S_3\times C_2^5.C_2^4$, of order \(49152\)\(\medspace = 2^{14} \cdot 3 \)
$\card{\operatorname{res}(S)}$\(3072\)\(\medspace = 2^{10} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2^2\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_2^6.D_6$
Normal closure:$C_2\times \GL(2,\mathbb{Z}/4):F_5$
Core:$C_2\times \GL(2,\mathbb{Z}/4)$
Minimal over-subgroups:$C_2\times \GL(2,\mathbb{Z}/4):F_5$
Maximal under-subgroups:$C_2^2\times \GL(2,\mathbb{Z}/4)$$C_2^5:C_{12}$$C_2^4.S_4$$C_2^5.D_6$$C_2^2.\GL(2,\mathbb{Z}/4)$$C_2^2.\GL(2,\mathbb{Z}/4)$$C_2^5.D_6$$\GL(2,\mathbb{Z}/4):C_4$$C_2^2.D_4^2$$C_2^4.D_6$

Other information

Number of subgroups in this autjugacy class$5$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2\times F_5\times S_4$