Properties

Label 3840.ft.240.DL
Order $ 2^{4} $
Index $ 2^{4} \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times C_4$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(1,3)(4,5)(6,7)(8,9)(10,11)(12,13)(14,15), (6,7)(10,11), (1,5,3,4)(6,7)(8,13)(9,12)(10,11)(14,15), (1,3)(4,5)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).

Ambient group ($G$) information

Description: $C_2\times \GL(2,\mathbb{Z}/4):F_5$
Order: \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times A_4).C_2^4.C_2^6$
$\operatorname{Aut}(H)$ $C_2^3:S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\operatorname{res}(S)$$D_4$, of order \(8\)\(\medspace = 2^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(256\)\(\medspace = 2^{8} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_4^2:C_2^3$
Normalizer:$C_4^2:C_2^3$
Normal closure:$C_2^2\times A_4:F_5$
Core:$C_2^2$
Minimal over-subgroups:$C_2^2\times F_5$$C_6.C_2^3$$C_2^3\times C_4$$C_2^3\times C_4$$C_2^3\times C_4$$C_2^3\times C_4$$C_2^3\times C_4$$C_2\times C_4^2$$C_2\times C_4^2$
Maximal under-subgroups:$C_2\times C_4$$C_2^3$$C_2\times C_4$

Other information

Number of subgroups in this autjugacy class$30$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2\times F_5\times S_4$