Properties

Label 3840.ft.120.F
Order $ 2^{5} $
Index $ 2^{3} \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^5$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Exponent: \(2\)
Generators: $\langle(6,7)(12,13), (8,9)(14,15), (2,5)(3,4), (6,7)(10,11)(12,13)(14,15), (2,5)(3,4)(8,9)(10,11)(12,13)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Ambient group ($G$) information

Description: $C_2\times \GL(2,\mathbb{Z}/4):F_5$
Order: \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times A_4).C_2^4.C_2^6$
$\operatorname{Aut}(H)$ $\GL(5,2)$, of order \(9999360\)\(\medspace = 2^{10} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 31 \)
$\operatorname{res}(S)$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(256\)\(\medspace = 2^{8} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2^6$
Normalizer:$C_2^5:C_4$
Normal closure:$C_2^4\times D_{10}$
Core:$C_2$
Minimal over-subgroups:$C_2^3\times D_{10}$$C_2^4:C_4$$C_2^6$
Maximal under-subgroups:$C_2^4$$C_2^4$$C_2^4$$C_2^4$$C_2^4$$C_2^4$$C_2^4$$C_2^4$$C_2^4$$C_2^4$$C_2^4$$C_2^4$$C_2^4$$C_2^4$$C_2^4$$C_2^4$$C_2^4$

Other information

Number of subgroups in this autjugacy class$60$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$\GL(2,\mathbb{Z}/4):F_5$