Properties

Label 3840.ft.12.B
Order $ 2^{6} \cdot 5 $
Index $ 2^{2} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^4\times F_5$
Order: \(320\)\(\medspace = 2^{6} \cdot 5 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $\langle(2,5)(3,4)(6,7)(8,9)(10,11), (8,9)(14,15), (2,3,5,4)(6,11)(7,10)(14,15), (2,5)(3,4), (12,13)(14,15), (6,7)(10,11)(12,13)(14,15), (1,3,5,2,4)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_2\times \GL(2,\mathbb{Z}/4):F_5$
Order: \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $D_6$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, an A-group, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times A_4).C_2^4.C_2^6$
$\operatorname{Aut}(H)$ $C_2^4.A_8\times F_5$, of order \(6451200\)\(\medspace = 2^{12} \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
$\operatorname{res}(\operatorname{Aut}(G))$$S_3\times D_4\times F_5$, of order \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(64\)\(\medspace = 2^{6} \)
$W$$D_6\times F_5$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_2^4$
Normalizer:$C_2\times \GL(2,\mathbb{Z}/4):F_5$
Minimal over-subgroups:$C_2^2\times A_4\times F_5$$C_2^5:F_5$$D_{10}.C_2^5$$D_{10}.(C_4\times D_4)$
Maximal under-subgroups:$C_2^3\times D_{10}$$C_2^3\times F_5$$C_2^3\times F_5$$C_2^3\times F_5$$C_2^3\times F_5$$C_2^3\times F_5$$C_2^3\times F_5$$C_2^4\times C_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2\times F_5\times S_4$