Properties

Label 3840.fe.48.Y
Order $ 2^{4} \cdot 5 $
Index $ 2^{4} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2.D_{10}$
Order: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $\langle(6,7)(14,15), (1,5,3,2,4), (1,4,2,3,5)(6,7)(8,9)(10,11)(12,13)(14,15), (1,4)(2,5)(6,14,7,15), (8,9)(12,13)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_2^3:F_5\times S_4$
Order: \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times A_4).C_2^6.C_2^5$
$\operatorname{Aut}(H)$ $F_5\times C_2^3:S_4$, of order \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
$\operatorname{res}(S)$$D_{10}.C_2^4$, of order \(320\)\(\medspace = 2^{6} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(128\)\(\medspace = 2^{7} \)
$W$$C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)

Related subgroups

Centralizer:$C_2^3\times C_4$
Normalizer:$D_{10}.D_4^2$
Normal closure:$C_2^3:D_{30}$
Core:$C_2\times C_{10}$
Minimal over-subgroups:$C_{10}.C_2^4$$C_{20}:C_2^3$$C_2^3:D_{10}$$C_2^3:D_{10}$$C_{20}:C_2^3$$C_2^3:D_{10}$$C_2^3:D_{10}$
Maximal under-subgroups:$C_2^2\times C_{10}$$C_{10}:C_4$$C_{10}:C_4$$C_2^2\times C_4$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2\times F_5\times S_4$