Properties

Label 3840.fe.24.E
Order $ 2^{5} \cdot 5 $
Index $ 2^{3} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3\times D_{10}$
Order: \(160\)\(\medspace = 2^{5} \cdot 5 \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $\langle(6,7)(14,15), (1,5,3,2,4), (2,3)(4,5)(8,9)(12,13), (6,7)(10,11), (8,9)(12,13), (12,13)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_2^3:F_5\times S_4$
Order: \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2\times D_6$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Outer Automorphisms: $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, an A-group, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times A_4).C_2^6.C_2^5$
$\operatorname{Aut}(H)$ $C_2^4.A_8\times F_5$, of order \(6451200\)\(\medspace = 2^{12} \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
$\operatorname{res}(S)$$C_2\times D_6\times F_5$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(128\)\(\medspace = 2^{7} \)
$W$$S_3\times F_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_2^5$
Normalizer:$C_2^3:F_5\times S_4$
Minimal over-subgroups:$C_2\times A_4\times D_{10}$$C_2^4\times D_{10}$$C_2^4:F_5$$C_{20}:C_2^4$$C_2^4:F_5$
Maximal under-subgroups:$C_2^3\times C_{10}$$C_2^2\times D_{10}$$C_2^2\times D_{10}$$C_2^2\times D_{10}$$C_2^2\times D_{10}$$C_2^2\times D_{10}$$C_2^2\times D_{10}$$C_2^2\times D_{10}$$C_2^2\times D_{10}$$C_2^5$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$C_2^2\times F_5\times S_4$